MANAGING THE QUALITY OF MACHINE TRANSLATION POST-EDITING IN THE LOCALISATION WORKFLOW
DOI:
https://doi.org/10.32782/2522-4077-2025-213-27Keywords:
localization, translation quality management, translation production process, language services industry, post-editing of machine translation, machine translationAbstract
The article is dedicated to the analysis of translation errors in a professional environment and the transformation of evaluation methods under the influence of modern linguistic services, particularly post-editing machine translation (PEMT). The focus of the study is on translation quality metrics used in the language services industry, particularly LISA QA Model, which is examined as one of the most widely used models on the market. The authors provide a detailed analysis of the structure of the LISA metric, which includes categories, subcategories, and levels of error severity. Using the real-world project of the localized product Google Search Ads 360 as an example, the article demonstrates the practical application of the metric and presents examples of typical errors in categories such as Accuracy, Language, Terminology, Style, Functional, Regional Standards Compliance, and Project Requirements Compliance. The article substantiates the need for a systematic implementation of error metrics to manage quality at all stages of the translation process. Traditional models developed for the evaluation of human translation must be adapted for PEMT. Based on the analysis, it is established that most LISA metric categories remain relevant for evaluating PEMT quality, although their applicability varies significantly. The highest likelihood of error detection occurs in subcategories related to terminology, style, compliance with project requirements, and locale standards. This is due to the unpredictability of machine translation engine outputs, even when identical prompts or reference materials are used. It is also noted that error types such as Addition/Omission and Incorrect Meaning remain relevant due to the tendency of MT engines to generalize or incompletely render content.Meanwhile, some subcategories (e.g., Spelling, Formatting, Tags/Links) have a low likelihood of errors, as modern MT systems handle such technical aspects fairly well.
References
Бондаренко О. Оцінка якості перекладу: дидактичний та галузевий підходи. Актуальні проблеми романо-германської філології та прикладної лінгвістики. 2018. № 1(15). С. 47–49.
Koby G. S., Fields P., Hague D. R., Lommel A., Melby A. Defining translation quality. Tradumàtica. 2014. № 12. С. 0413–0420.
Drugan J. Quality in professional translation: Assessment and improvement. Vol. 9. London : A&C Black, 2013. 272 p.
Snow T. A. Establishing the viability of the multidimensional quality metrics framework. Provo : Brigham Young University, 2015. 156 p.
Brunette L. Towards a terminology for translation quality assessment: A comparison of TQA practices. Evaluation and Translation. London : Routledge, 2014. P. 169–182.
Moorkens J., Castilho S., Gaspari F., Doherty S. Translation quality assessment. Machine translation: Technologies and applications series. Cham : Springer International Publishing, 2018. Vol. 1. 299 p.
Han C. Translation quality assessment: a critical methodological review. The Translator. 2020. Vol. 26, № 3. P. 257–273.
Іващенко Р. В. Особливості локалізації програмного забезпечення на матеріалі відеохостингу YouTube: кваліфікаційна робота на правах рукопису. Кропивницький: Центральноукраїнський державний університет імені Володимира Винниченка, 2023. 123 с.
Мишко А., Гудманян А., Брай А. Оцінка адекватності машинного перекладу письмових спеціалізованих текстів. Advanced Linguistics. 2023. № 12. С. 66–77.
Ольховська А., Хоменко А. Вплив використання нейронної системи машинного перекладу на якість перекладу текстів у галузі економіки. Молодь і ринок. 2020. № 5(184). С. 30–35.
Ayvazyan N., Torres-Simón E., Pym A. Translation students' trust in machine translation: Too good to be true? Revolutionizing Translation Studies: Synthesizing Translation with AI and IT innovation. Berlin : Springer, 2024. P. 9–30.
LISA QA Model 3.1: Assisting the localization development, production and quality control processes for global product distribution. Romainmôtier : LISA, 2006. (Press release).
Lommel A., Uszkoreit H., Burchardt A. Multidimensional quality metrics (MQM): A framework for declaring and describing translation quality metrics. Tradumàtica. 2014. № 12. P. 0455–0463.
Bondarenko K. Ukrainian localization: Cultural aspects. Traducción e interpretación como mediación (inter)cultural: Visiones y perspectivas de futuro / eds. M. F. de Casadevante Mayordomo, A. C. Sánchez López. Madrid : Comares, 2024. P. 229–245.






