COMPARATIVE ANALYSIS OF MACHINE TRANSLATION TECHNIQUES PERFORMED BY SYSTRAN, O.TRANSLATOR AND M-TRANSLATE

Authors

DOI:

https://doi.org/10.32782/2522-4077-2024-209-47

Keywords:

machine translation, statistical translation, legal translation, corpus, translation of European legislation.

Abstract

The article examines the accuracy of both free – M-Translate – and professional and paid machine translation systems – Systran, O.Translator – in the complex context of legal translation. The paper analyses machine translation performed by Systran, O.Translator and M-Translate on a large sample of English legal vocabulary items derived from a long text of a judgment issued by the Court of Justice of the European Union. Prior to this study, the same text was translated by a professional translator without MT; the human's translation was used as a reference for comparison with the translation performed by Systran, O.Translator and M-Translate machine translation systems. The study involved a statistical analysis of the corpus using Sketchengine. It was found that many of the words and phrases of the translation options selected for the above vocabulary items are mainly available in the EU case law databases in English, while Ukrainian versions of such lexical items are not available, and therefore it was impossible to select them manually without applying the translation and then analysis procedure. The article argues that the use of MT systems in the context of legal translation can be useful if the purpose of such translation is to provide a general familiarisation with the text; it is also emphasised that translation performed by MT systems can consistently provide a reasonable number of accurate translations of the types of vocabulary items that translators in this context often need to research before being able to translate them effectively. For this purpose, a sample of such vocabulary items was selected and presented in a table. It is concluded that MT systems in the context of legal translation can also be used to teach law students, since, in recent years, curricula are often based on the analysis of the EU legal framework and judgments of the European Court of Justice. In addition, MT systems can be used as an immediate countertext to dictionary items as a way of trying to identify the correctness of a translation.

References

Hutchins J. The Development and Use of Machine Translation Systems and Computer-based Translation Tools. International journal of translation. 2003. № 15(1). P. 5–26. https://aclanthology.org/www.mt-archive.info/00/IJT-2003-Hutchins.pdf

Killman J. Machine translation and legal terminology. Data-driven approaches to contextual accuracy. Handbook of Terminology. Legal Terminology. 2023. № 3. P. 485–510. https://doi.org/10.1075/hot.3.mac2

Giampieri P. Is machine translation reliable in the legal field? A corpus-based critical comparative analysis for teaching esp at tertiary level. ESP Today. 2023. № 11(1). P. 119–137. https://doi.org/10.18485/esptoday.2023.11.1.6

Шилінська І. Ф. Кузів М. З., Використання систем машинного перекладу під час навчання перекладу науково-технічних текстів. Науковий вісник Міжнародного гуманітарного університету. Сер.: Філологія. 2022 № 53(2). С. 149–152. DOI https://doi.org/10.32841/2409-1154.2022.53-2.34

Kit Ch., Wong T.M. Comparative Evaluation of Online Machine Translation Systems with Legal Texts. Law Library Journal. 2008. № 100(2). P. 299–321. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6cb704046816107a56f9409e66fede58d67215e0

Omazić M., Šoštarić B. New resources and methods in translating legal texts: machine translation and post-editing of machine-translated legal texts. Language(s) and law. 2023. P. 71–83. https://www.pravos.unios.hr/wp-content/uploads/2023/07/Publication-Languages-and-Law-2.pdf#page=71

Wahlera M.E. Word is worth a thousand words: legal implications of relying on machine translation technology. Stetson Law Review. 2018. № 48 P. 109–139 https://www2.stetson.edu/law-review/wp-content/uploads/2020/01/4.Wahler.48.1-1.pdf

Kovács T. Human and machine translation: a comparative analysis of neural machine- and humantranslated EN-HU and HU-EN legal texts. Porta lingua. 2022. №1.szám P. 49–57. https://doi.org/10.48040/PL.2022.1.5

Killman J. Vocabulary Accuracy of Statistical Machine Translation in the Legal Context. Conference of the Association for Machine Translation in the Americas. 2014. P. 85–98. https://aclanthology.org/2014.amtawptp.7.pdf

Ольховська А.С., Лавренова М.М. Експериментальне дослідження з вивчення впливу використання систем машинного перекладу на якість перекладу текстів у галузі юриспруденції. Вісник Харківського національного університету імені В. Н. Каразіна. Серія: Іноземна філологія. 2021. № 94. С. 74–78 https://doi.org/10.26565/2227-8877-2021-94-11

Ольховська Н.С., Скокова М.С. Фонетичні та лексико-семантичні особливості німецькомовної аграрної термінології: перекладацький аспект. Наукові записки Національного університету «Острозька академія», серія «Філологія». 2019. № 7(75). С.78–80.

Alkatheery E.R. Google Translate Errors in Legal Texts: Machine Translation Quality Assessment. AWEJ for Translation & Literary Studies. 2023. № 7(1). P. 208–219. DOI: http://dx.doi.org/10.24093/awejtls/vol7no1.16

Published

2024-06-20

How to Cite

Riabova, K. O. (2024). COMPARATIVE ANALYSIS OF MACHINE TRANSLATION TECHNIQUES PERFORMED BY SYSTRAN, O.TRANSLATOR AND M-TRANSLATE. Наукові записки. Серія: Філологічні науки, (209), 315–321. https://doi.org/10.32782/2522-4077-2024-209-47