ПРОБЛЕМИ МАШИННОГО ПЕРЕКЛАДУ ТА ЙОГО ЗАСТОСУВАННЯ У НАВЧАННІ МАЙБУТНІХ ПЕРЕКЛАДАЧІВ
Ключові слова:
антропогенний переклад, гіперантропогенний переклад, машинний переклад, навчання перекладу.Анотація
Ґрунтуючись на результатах аналізу сучасних закордонних досліджень статусу машинного перекладу та його ролі у навчанні майбутніх перекладачів, пропонується висновок стосовно безальтернативності застосування МП в перекладацькій діяльності, а отже – й необхідності його запровадження до змісту навчання майбутніх перекладачів. Поділяється думка про продуктивність інтеграції машинного й антропогенного перекладу в гіперантропогенний його вид, де головним залишається людина, яка вміло використовує усі переваги технічних засобів для підвищення якості та швидкості перекладу.
Посилання
Alonso, E. & Calvo, E. (2015). Developing a Blueprint for a Technology-mediated Approach to Translation Studies. Meta, 60(1), 135–157. https://doi.org/10.7202/1032403a
Burchardt, A., Lommel, A., Bywood, L., Harris, K. & Popović, M. (2016). Machine translation quality in an audiovisual context. Target, 28(2), 206-221. https://doi.org/10.1075/target.28.2.03bur
Cid, C. G., Colominas, C., Oliver, A. (2020). Language industry views on the profile of the posteditor. Translation Spaces, 9(2), 283-313. https://doi.org/10.1075/ts.19010.cid
Cifuentes-Ferez P., Rojo, A. (2015). Thinking for Translating. Think-aloud Protocol on the translation of manner-of-motion verbs. Target, 27(2), 273-300. https://doi.org/10.1075/target.27.2.05cif
Daems, J., Vandepitte, S., Hartsuiker, R. J. & Macken, L. (2017). Translation Methods and Experience: A Comparative Analysis of Human Translation and Post-editing with Students and Professional Translators. Meta, 62(2), 245–270. https://doi.org/10.7202/1041023ar
EMT Expert Group (2009). Competences for professional translators, experts in multilingual and multimedia communication. Brussels. https://ec.europa.eu/info/sites/info/files/emt_competences_translators_en.pdf
Esqueda, M. D. (2021). Machine translation: teaching and learning issues. Trabalhos em Linguística Aplicada, 60(1). 282-299.
Federici, F. M., Al Sharou, Kh. (2018). Moses, time, and crisis translation. Translation and Interpreting Studies, 13(3), 486-508. https://doi.org/10.1075/tis.00026.fed
Gaspari, F., Almaghout, H. & Doherty, S. (2015). A survey of machine translation competences: Insights for translation technology educators and practitioners. Perspectives, 23(3), 333-358. https://doi.org/10.1080/0907676X.2014.979842
Jisun, Sh., Kim E. (2017). The Emergence of an Artificial Intelligence Translation System. The Journal of Translation Studies, 18(5), 91-110
Kenny, D., Doherty, S. (2014). Statistical machine translation in the translation curriculum: overcoming obstacles and empowering translators. The Interpreter and Translator Trainer, 8(2), 276-294. https://doi.org/10.1080/1750399X.2014.936112
Killman, J. (2018). Translating the same text twice. The Journal of Internationalization and Localization, 5(2), 114-141. https://doi.org/10.1075/jial.18003.kil
Lee, S.-M. (2020). The impact of using machine translation on EFL students’ writing. Computer Assisted Language Learning. 33(3). 157-175. https://doi.org/10.1080/09588221.2018.1553186.
Loock, R. (2018). Traduction automatique et usage linguistique : une analyse de traductions anglaisfrançais réunies en corpus. Meta, 63(3), 786–806. https://doi.org/10.7202/1060173ar
Man, D., Mo, A., Chau, M. H., O’Toole, J. M., Lee, Ch. (2020). Translation technology adoption: evidence from a postgraduate programme for student translators in China. Perspectives, 28(2), 253-270. https://doi.org/10.1080/0907676X.2019.1677730
Marshman, E. (2014). Taking Control: Language Professionals and Their Perception of Control when Using Language Technologies. Meta, 59(2), 380–405. https://doi.org/10.7202/1027481a
Mellinger, Ch. D. (2017) Translators and machine translation: knowledge and skills gaps in translator pedagogy. The Interpreter and Translator Trainer. 11(4). 280-293. https://doi.org/10.1080/1750399X.2017.1359760
Mellinger D. Ch. (2018). Re-thinking translation quality. Revision in the digital age. Target, 30(2), 310-331. https://doi.org/10.1075/target.16104.mel
Moorkens, J. (2018). What to expect from Neural Machine Translation: a practical in-class translation evaluation exercise. The Interpreter and Translator Trainer, 12(4), 375-387. https://doi.org/10.1080/1750399X.2018.1501639
O’Brien, Sh., Rossetti, A. (2020). Neural machine translation and the evolution of the localisation sector. The Journal of Internationalization and Localization, 7(1-2), 95-121. https://doi.org/10.1075/jial.20005.obr
PACTE Group (2003). Building a Translation Competence Model. Triangulating Translation: Perspectives in Process Oriented Research /Alves F. (ed.). Amsterdam: Benjamins. P. 43-66. https://doi.org/10.1075/btl.45.06pac
Pym, A. (2013). Translation Skill-Sets in a Machine-Translation Age. Meta, 58(3), 487–503. https://doi.org/10.7202/1025047ar
Rodríguez-Castro, M. (2018). An integrated curricular design for computer-assisted translation tools: developing technical expertise. The Interpreter and Translator Trainer. 12(4). 355-374. https://doi.org/10.1080/1750399X.2018.1502007
Rodríguez de Céspedes, B. (2019). Translator Education at a Crossroads: the Impact of Automation. Lebende Sprachen, 64(1), 103-121. https://doi.org/10.1515/les-2019-0005
Şahin, M. & Duman, D. (2013). Multilingual Chat through Machine Translation: A Case of English- Russian. Meta, 58(2), 397–410. https://doi.org/10.7202/1024180a
Schmidhofer, A. & Mair, N. (2019). La traducción automática en la formación de traductores. CLINA: Revista Interdisciplinaria de Traducción, Interpretación y Comunicación Intercultural, 4(2), 163-180. https://doi.org/10.14201/clina201842163180
Shih, C. Y. (2017). Web search for translation: an exploratory study on six Chinese trainee translators’ behaviour. Asia Pacific Translation and Intercultural Studies, 4(1), 50-66.
https://doi.org/10.1080/23306343.2017.1284641
Vieira L. N. & Alonso E. (2020) Translating perceptions and managing expectations: an analysis of management and production perspectives on machine translation. Perspectives, 28(2), 163-184. https://doi.org/10.1080/0907676X.2019.1646776
Yang, Y., Wang, X. (2019). Modeling the intention to use machine translation for student translators: An extension of Technology Acceptance Model. Computers & Education, 133, 116-126. https://doi.org/10.1016/j.compedu.2019.01.015
Yang, Y. & Wang X. (2020) Predicting student translators’ performance in machine translation postediting: interplay of self-regulation, critical thinking, and motivation. Interactive Learning Environments, 0(0), 1-15. https://doi.org/10.1080/10494820.2020.1786407
Yang, Y., Wang X. & Yuan Q. (2021). Measuring the usability of machine translation in the classroom context. Translation and Interpreting Studies, 16(1), 101-123. https://doi.org/10.1075/tis.18047.yan
이상빈. (2018). Process research into post-editing: How do undergraduate students post-edit the output of Google Translate? The Journal of Translation Studies, 19(3), 259-286. https://doi.org/10.15749/jts.2018.19.3.010